Welcome to the Linux Foundation Forum!
Implementation problem
Rizwana
Posts: 2
Hello, I want to implement k-means algo on LEACH protocol in ns2.34 in centos for that i don`t have any idea how to implement it with given code? Please help me ? Please guide me for that.I have installed leach in ns2.34.
// kmeans.h
// Ethan Brodsky
// October 2011
void kmeans(
int dim, // dimension of data
double *X, // pointer to data
int n, // number of elements
int k, // number of clusters
double *cluster_centroid, // initial cluster centroids
int *cluster_assignment_final // output
);
// Ethan Brodsky
// October 2011
void kmeans(
int dim, // dimension of data
double *X, // pointer to data
int n, // number of elements
int k, // number of clusters
double *cluster_centroid, // initial cluster centroids
int *cluster_assignment_final // output
);
// kmeans.c
// Ethan Brodsky
// October 2011
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define sqr(x) ((x)*(x))
#define MAX_CLUSTERS 16
#define MAX_ITERATIONS 100
#define BIG_double (INFINITY)
void fail(char *str)
{
printf(str);
exit(-1);
}
double calc_distance(int dim, double *p1, double *p2)
{
double distance_sq_sum = 0;
for (int ii = 0; ii < dim; ii++)
distance_sq_sum += sqr(p1[ii] - p2[ii]);
return distance_sq_sum;
}
void calc_all_distances(int dim, int n, int k, double *X, double *centroid, double *distance_output)
{
for (int ii = 0; ii < n; ii++) // for each point
for (int jj = 0; jj < k; jj++) // for each cluster
{
// calculate distance between point and cluster centroid
distance_output[ii*k + jj] = calc_distance(dim, &X[ii*dim], ¢roid[jj*dim]);
}
}
double calc_total_distance(int dim, int n, int k, double *X, double *centroids, int *cluster_assignment_index)
// NOTE: a point with cluster assignment -1 is ignored
{
double tot_D = 0;
// for every point
for (int ii = 0; ii < n; ii++)
{
// which cluster is it in?
int active_cluster = cluster_assignment_index[ii];
// sum distance
if (active_cluster != -1)
tot_D += calc_distance(dim, &X[ii*dim], ¢roids[active_cluster*dim]);
}
return tot_D;
}
void choose_all_clusters_from_distances(int dim, int n, int k, double *distance_array, int *cluster_assignment_index)
{
// for each point
for (int ii = 0; ii < n; ii++)
{
int best_index = -1;
double closest_distance = BIG_double;
// for each cluster
for (int jj = 0; jj < k; jj++)
{
// distance between point and cluster centroid
double cur_distance = distance_array[ii*k + jj];
if (cur_distance < closest_distance)
{
best_index = jj;
closest_distance = cur_distance;
}
}
// record in array
cluster_assignment_index[ii] = best_index;
}
}
void calc_cluster_centroids(int dim, int n, int k, double *X, int *cluster_assignment_index, double *new_cluster_centroid)
{
int cluster_member_count[MAX_CLUSTERS];
// initialize cluster centroid coordinate sums to zero
for (int ii = 0; ii < k; ii++)
{
cluster_member_count[ii] = 0;
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[ii*dim + jj] = 0;
}
// sum all points
// for every point
for (int ii = 0; ii < n; ii++)
{
// which cluster is it in?
int active_cluster = cluster_assignment_index[ii];
// update count of members in that cluster
cluster_member_count[active_cluster]++;
// sum point coordinates for finding centroid
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[active_cluster*dim + jj] += X[ii*dim + jj];
}
// now divide each coordinate sum by number of members to find mean/centroid
// for each cluster
for (int ii = 0; ii < k; ii++)
{
if (cluster_member_count[ii] == 0)
printf("WARNING: Empty cluster %d! \n", ii);
// for each dimension
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[ii*dim + jj] /= cluster_member_count[ii]; /// XXXX will divide by zero here for any empty clusters!
}
}
void get_cluster_member_count(int n, int k, int *cluster_assignment_index, int *cluster_member_count)
{
// initialize cluster member counts
for (int ii = 0; ii < k; ii++)
cluster_member_count[ii] = 0;
// count members of each cluster
for (int ii = 0; ii < n; ii++)
cluster_member_count[cluster_assignment_index[ii[[++;
}
void update_delta_score_table(int dim, int n, int k, double *X, int *cluster_assignment_cur, double *cluster_centroid, int *cluster_member_count, double *point_move_score_table, int cc)
{
// for every point (both in and not in the cluster)
for (int ii = 0; ii < n; ii++)
{
double dist_sum = 0;
for (int kk = 0; kk < dim; kk++)
{
double axis_dist = X[ii*dim + kk] - cluster_centroid[cc*dim + kk];
dist_sum += sqr(axis_dist);
}
double mult = ((double)cluster_member_count[cc] / (cluster_member_count[cc] + ((cluster_assignment_cur[ii]==cc) ? -1 : +1)));
point_move_score_table[ii*dim + cc] = dist_sum * mult;
}
}
void perform_move(int dim, int n, int k, double *X, int *cluster_assignment, double *cluster_centroid, int *cluster_member_count, int move_point, int move_target_cluster)
{
int cluster_old = cluster_assignment[move_point];
int cluster_new = move_target_cluster;
// update cluster assignment array
cluster_assignment[move_point] = cluster_new;
// update cluster count array
cluster_member_count[cluster_old]--;
cluster_member_count[cluster_new]++;
if (cluster_member_count[cluster_old] <= 1)
printf("WARNING: Can't handle single-member clusters! \n");
// update centroid array
for (int ii = 0; ii < dim; ii++)
{
cluster_centroid[cluster_old*dim + ii] -= (X[move_point*dim + ii] - cluster_centroid[cluster_old*dim + ii]) / cluster_member_count[cluster_old];
cluster_centroid[cluster_new*dim + ii] += (X[move_point*dim + ii] - cluster_centroid[cluster_new*dim + ii]) / cluster_member_count[cluster_new];
}
}
void cluster_diag(int dim, int n, int k, double *X, int *cluster_assignment_index, double *cluster_centroid)
{
int cluster_member_count[MAX_CLUSTERS];
get_cluster_member_count(n, k, cluster_assignment_index, cluster_member_count);
printf(" Final clusters \n");
for (int ii = 0; ii < k; ii++)
printf(" cluster %d: members: %8d, centroid (%.1f %.1f) \n", ii, cluster_member_count[ii], cluster_centroid[ii*dim + 0], cluster_centroid[ii*dim + 1]);
}
void copy_assignment_array(int n, int *src, int *tgt)
{
for (int ii = 0; ii < n; ii++)
tgt[ii] = src[ii];
}
int assignment_change_count(int n, int a[], int b[])
{
int change_count = 0;
for (int ii = 0; ii < n; ii++)
if (a[ii] != b[ii])
change_count++;
return change_count;
}
void kmeans(
int dim, // dimension of data
double *X, // pointer to data
int n, // number of elements
int k, // number of clusters
double *cluster_centroid, // initial cluster centroids
int *cluster_assignment_final // output
)
{
double *dist = (double *)malloc(sizeof(double) * n * k);
int *cluster_assignment_cur = (int *)malloc(sizeof(int) * n);
int *cluster_assignment_prev = (int *)malloc(sizeof(int) * n);
double *point_move_score = (double *)malloc(sizeof(double) * n * k);
if (!dist || !cluster_assignment_cur || !cluster_assignment_prev || !point_move_score)
fail("Error allocating dist arrays");
// initial setup
calc_all_distances(dim, n, k, X, cluster_centroid, dist);
choose_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_prev);
// BATCH UPDATE
double prev_totD = BIG_double;
int batch_iteration = 0;
while (batch_iteration < MAX_ITERATIONS)
{
// printf("batch iteration %d \n", batch_iteration);
// cluster_diag(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// update cluster centroids
calc_cluster_centroids(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// deal with empty clusters
// XXXXXXXXXXXXXX
// see if we've failed to improve
double totD = calc_total_distance(dim, n, k, X, cluster_centroid, cluster_assignment_cur);
if (totD > prev_totD)
// failed to improve - currently solution worse than previous
{
// restore old assignments
copy_assignment_array(n, cluster_assignment_prev, cluster_assignment_cur);
// recalc centroids
calc_cluster_centroids(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
printf(" negative progress made on this step - iteration completed (%.2f) \n", totD - prev_totD);
// done with this phase
break;
}
// save previous step
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_prev);
// move all points to nearest cluster
calc_all_distances(dim, n, k, X, cluster_centroid, dist);
choose_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
int change_count = assignment_change_count(n, cluster_assignment_cur, cluster_assignment_prev);
printf("%3d %u %9d %16.2f %17.2f\n", batch_iteration, 1, change_count, totD, totD - prev_totD);
fflush(stdout);
// done with this phase if nothing has changed
if (change_count == 0)
{
printf(" no change made on this step - iteration completed \n");
break;
}
prev_totD = totD;
batch_iteration++;
}
cluster_diag(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// ONLINE UPDATE
/* The online update prtion of this code has never worked properly, but batch update has been adequate for our projects so far.
int online_iteration = 0;
int last_point_moved = 0;
int cluster_changed[MAX_CLUSTERS];
for (int ii = 0; ii < k; ii++)
cluster_changed[ii] = 1;
int cluster_member_count[MAX_CLUSTERS];
get_cluster_member_count(n, k, cluster_assignment_cur, cluster_member_count);
while (online_iteration < MAX_ITERATIONS)
{
// printf("online iteration %d \n", online_iteration);
// for each cluster
for (int ii = 0; ii < k; ii++)
if (cluster_changed[ii])
update_delta_score_table(dim, n, k, X, cluster_assignment_cur, cluster_centroid, cluster_member_count, point_move_score, ii);
// pick a point to move
// look at points in sequence starting at one after previously moved point
int make_move = 0;
int point_to_move = -1;
int target_cluster = -1;
for (int ii = 0; ii < n; ii++)
{
int point_to_consider = (last_point_moved + 1 + ii) % n;
// find the best target for it
int best_target_cluster = -1;
int best_match_count = 0;
double best_delta = BIG_double;
// for each possible target
for (int jj = 0; jj < k; jj++)
{
double cur_delta = point_move_score[point_to_consider*k + jj];
// is this the best move so far?
if (cur_delta < best_delta)
// yes - record it
{
best_target_cluster = jj;
best_delta = cur_delta;
best_match_count = 1;
}
else if (cur_delta == best_delta)
// no, but it's tied with the best one
best_match_count++;
}
// is the best cluster for this point its current cluster?
if (best_target_cluster == cluster_assignment_cur[point_to_consider])
// yes - don't move this point
continue;
// do we have a unique best move?
if (best_match_count > 1)
// no - don't move this point (ignore ties)
continue;
else
// yes - we've found a good point to move
{
point_to_move = point_to_consider;
target_cluster = best_target_cluster;
make_move = 1;
break;
}
}
if (make_move)
{
// where should we move it to?
printf(" %10d: moved %d to %d \n", point_to_move, cluster_assignment_cur[point_to_move], target_cluster);
// mark which clusters have been modified
for (int ii = 0; ii < k; ii++)
cluster_changed[ii] = 0;
cluster_changed[cluster_assignment_cur[point_to_move[[ = 1;
cluster_changed[target_cluster] = 1;
// perform move
perform_move(dim, n, k, X, cluster_assignment_cur, cluster_centroid, cluster_member_count, point_to_move, target_cluster);
// count an iteration every time we've cycled through all the points
if (point_to_move < last_point_moved)
online_iteration++;
last_point_moved = point_to_move;
}
}
*/
// printf("iterations: %3d %3d \n", batch_iteration, online_iteration);
// write to output array
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_final);
free(dist);
free(cluster_assignment_cur);
free(cluster_assignment_prev);
free(point_move_score);
}
// Ethan Brodsky
// October 2011
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define sqr(x) ((x)*(x))
#define MAX_CLUSTERS 16
#define MAX_ITERATIONS 100
#define BIG_double (INFINITY)
void fail(char *str)
{
printf(str);
exit(-1);
}
double calc_distance(int dim, double *p1, double *p2)
{
double distance_sq_sum = 0;
for (int ii = 0; ii < dim; ii++)
distance_sq_sum += sqr(p1[ii] - p2[ii]);
return distance_sq_sum;
}
void calc_all_distances(int dim, int n, int k, double *X, double *centroid, double *distance_output)
{
for (int ii = 0; ii < n; ii++) // for each point
for (int jj = 0; jj < k; jj++) // for each cluster
{
// calculate distance between point and cluster centroid
distance_output[ii*k + jj] = calc_distance(dim, &X[ii*dim], ¢roid[jj*dim]);
}
}
double calc_total_distance(int dim, int n, int k, double *X, double *centroids, int *cluster_assignment_index)
// NOTE: a point with cluster assignment -1 is ignored
{
double tot_D = 0;
// for every point
for (int ii = 0; ii < n; ii++)
{
// which cluster is it in?
int active_cluster = cluster_assignment_index[ii];
// sum distance
if (active_cluster != -1)
tot_D += calc_distance(dim, &X[ii*dim], ¢roids[active_cluster*dim]);
}
return tot_D;
}
void choose_all_clusters_from_distances(int dim, int n, int k, double *distance_array, int *cluster_assignment_index)
{
// for each point
for (int ii = 0; ii < n; ii++)
{
int best_index = -1;
double closest_distance = BIG_double;
// for each cluster
for (int jj = 0; jj < k; jj++)
{
// distance between point and cluster centroid
double cur_distance = distance_array[ii*k + jj];
if (cur_distance < closest_distance)
{
best_index = jj;
closest_distance = cur_distance;
}
}
// record in array
cluster_assignment_index[ii] = best_index;
}
}
void calc_cluster_centroids(int dim, int n, int k, double *X, int *cluster_assignment_index, double *new_cluster_centroid)
{
int cluster_member_count[MAX_CLUSTERS];
// initialize cluster centroid coordinate sums to zero
for (int ii = 0; ii < k; ii++)
{
cluster_member_count[ii] = 0;
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[ii*dim + jj] = 0;
}
// sum all points
// for every point
for (int ii = 0; ii < n; ii++)
{
// which cluster is it in?
int active_cluster = cluster_assignment_index[ii];
// update count of members in that cluster
cluster_member_count[active_cluster]++;
// sum point coordinates for finding centroid
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[active_cluster*dim + jj] += X[ii*dim + jj];
}
// now divide each coordinate sum by number of members to find mean/centroid
// for each cluster
for (int ii = 0; ii < k; ii++)
{
if (cluster_member_count[ii] == 0)
printf("WARNING: Empty cluster %d! \n", ii);
// for each dimension
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[ii*dim + jj] /= cluster_member_count[ii]; /// XXXX will divide by zero here for any empty clusters!
}
}
void get_cluster_member_count(int n, int k, int *cluster_assignment_index, int *cluster_member_count)
{
// initialize cluster member counts
for (int ii = 0; ii < k; ii++)
cluster_member_count[ii] = 0;
// count members of each cluster
for (int ii = 0; ii < n; ii++)
cluster_member_count[cluster_assignment_index[ii[[++;
}
void update_delta_score_table(int dim, int n, int k, double *X, int *cluster_assignment_cur, double *cluster_centroid, int *cluster_member_count, double *point_move_score_table, int cc)
{
// for every point (both in and not in the cluster)
for (int ii = 0; ii < n; ii++)
{
double dist_sum = 0;
for (int kk = 0; kk < dim; kk++)
{
double axis_dist = X[ii*dim + kk] - cluster_centroid[cc*dim + kk];
dist_sum += sqr(axis_dist);
}
double mult = ((double)cluster_member_count[cc] / (cluster_member_count[cc] + ((cluster_assignment_cur[ii]==cc) ? -1 : +1)));
point_move_score_table[ii*dim + cc] = dist_sum * mult;
}
}
void perform_move(int dim, int n, int k, double *X, int *cluster_assignment, double *cluster_centroid, int *cluster_member_count, int move_point, int move_target_cluster)
{
int cluster_old = cluster_assignment[move_point];
int cluster_new = move_target_cluster;
// update cluster assignment array
cluster_assignment[move_point] = cluster_new;
// update cluster count array
cluster_member_count[cluster_old]--;
cluster_member_count[cluster_new]++;
if (cluster_member_count[cluster_old] <= 1)
printf("WARNING: Can't handle single-member clusters! \n");
// update centroid array
for (int ii = 0; ii < dim; ii++)
{
cluster_centroid[cluster_old*dim + ii] -= (X[move_point*dim + ii] - cluster_centroid[cluster_old*dim + ii]) / cluster_member_count[cluster_old];
cluster_centroid[cluster_new*dim + ii] += (X[move_point*dim + ii] - cluster_centroid[cluster_new*dim + ii]) / cluster_member_count[cluster_new];
}
}
void cluster_diag(int dim, int n, int k, double *X, int *cluster_assignment_index, double *cluster_centroid)
{
int cluster_member_count[MAX_CLUSTERS];
get_cluster_member_count(n, k, cluster_assignment_index, cluster_member_count);
printf(" Final clusters \n");
for (int ii = 0; ii < k; ii++)
printf(" cluster %d: members: %8d, centroid (%.1f %.1f) \n", ii, cluster_member_count[ii], cluster_centroid[ii*dim + 0], cluster_centroid[ii*dim + 1]);
}
void copy_assignment_array(int n, int *src, int *tgt)
{
for (int ii = 0; ii < n; ii++)
tgt[ii] = src[ii];
}
int assignment_change_count(int n, int a[], int b[])
{
int change_count = 0;
for (int ii = 0; ii < n; ii++)
if (a[ii] != b[ii])
change_count++;
return change_count;
}
void kmeans(
int dim, // dimension of data
double *X, // pointer to data
int n, // number of elements
int k, // number of clusters
double *cluster_centroid, // initial cluster centroids
int *cluster_assignment_final // output
)
{
double *dist = (double *)malloc(sizeof(double) * n * k);
int *cluster_assignment_cur = (int *)malloc(sizeof(int) * n);
int *cluster_assignment_prev = (int *)malloc(sizeof(int) * n);
double *point_move_score = (double *)malloc(sizeof(double) * n * k);
if (!dist || !cluster_assignment_cur || !cluster_assignment_prev || !point_move_score)
fail("Error allocating dist arrays");
// initial setup
calc_all_distances(dim, n, k, X, cluster_centroid, dist);
choose_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_prev);
// BATCH UPDATE
double prev_totD = BIG_double;
int batch_iteration = 0;
while (batch_iteration < MAX_ITERATIONS)
{
// printf("batch iteration %d \n", batch_iteration);
// cluster_diag(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// update cluster centroids
calc_cluster_centroids(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// deal with empty clusters
// XXXXXXXXXXXXXX
// see if we've failed to improve
double totD = calc_total_distance(dim, n, k, X, cluster_centroid, cluster_assignment_cur);
if (totD > prev_totD)
// failed to improve - currently solution worse than previous
{
// restore old assignments
copy_assignment_array(n, cluster_assignment_prev, cluster_assignment_cur);
// recalc centroids
calc_cluster_centroids(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
printf(" negative progress made on this step - iteration completed (%.2f) \n", totD - prev_totD);
// done with this phase
break;
}
// save previous step
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_prev);
// move all points to nearest cluster
calc_all_distances(dim, n, k, X, cluster_centroid, dist);
choose_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
int change_count = assignment_change_count(n, cluster_assignment_cur, cluster_assignment_prev);
printf("%3d %u %9d %16.2f %17.2f\n", batch_iteration, 1, change_count, totD, totD - prev_totD);
fflush(stdout);
// done with this phase if nothing has changed
if (change_count == 0)
{
printf(" no change made on this step - iteration completed \n");
break;
}
prev_totD = totD;
batch_iteration++;
}
cluster_diag(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// ONLINE UPDATE
/* The online update prtion of this code has never worked properly, but batch update has been adequate for our projects so far.
int online_iteration = 0;
int last_point_moved = 0;
int cluster_changed[MAX_CLUSTERS];
for (int ii = 0; ii < k; ii++)
cluster_changed[ii] = 1;
int cluster_member_count[MAX_CLUSTERS];
get_cluster_member_count(n, k, cluster_assignment_cur, cluster_member_count);
while (online_iteration < MAX_ITERATIONS)
{
// printf("online iteration %d \n", online_iteration);
// for each cluster
for (int ii = 0; ii < k; ii++)
if (cluster_changed[ii])
update_delta_score_table(dim, n, k, X, cluster_assignment_cur, cluster_centroid, cluster_member_count, point_move_score, ii);
// pick a point to move
// look at points in sequence starting at one after previously moved point
int make_move = 0;
int point_to_move = -1;
int target_cluster = -1;
for (int ii = 0; ii < n; ii++)
{
int point_to_consider = (last_point_moved + 1 + ii) % n;
// find the best target for it
int best_target_cluster = -1;
int best_match_count = 0;
double best_delta = BIG_double;
// for each possible target
for (int jj = 0; jj < k; jj++)
{
double cur_delta = point_move_score[point_to_consider*k + jj];
// is this the best move so far?
if (cur_delta < best_delta)
// yes - record it
{
best_target_cluster = jj;
best_delta = cur_delta;
best_match_count = 1;
}
else if (cur_delta == best_delta)
// no, but it's tied with the best one
best_match_count++;
}
// is the best cluster for this point its current cluster?
if (best_target_cluster == cluster_assignment_cur[point_to_consider])
// yes - don't move this point
continue;
// do we have a unique best move?
if (best_match_count > 1)
// no - don't move this point (ignore ties)
continue;
else
// yes - we've found a good point to move
{
point_to_move = point_to_consider;
target_cluster = best_target_cluster;
make_move = 1;
break;
}
}
if (make_move)
{
// where should we move it to?
printf(" %10d: moved %d to %d \n", point_to_move, cluster_assignment_cur[point_to_move], target_cluster);
// mark which clusters have been modified
for (int ii = 0; ii < k; ii++)
cluster_changed[ii] = 0;
cluster_changed[cluster_assignment_cur[point_to_move[[ = 1;
cluster_changed[target_cluster] = 1;
// perform move
perform_move(dim, n, k, X, cluster_assignment_cur, cluster_centroid, cluster_member_count, point_to_move, target_cluster);
// count an iteration every time we've cycled through all the points
if (point_to_move < last_point_moved)
online_iteration++;
last_point_moved = point_to_move;
}
}
*/
// printf("iterations: %3d %3d \n", batch_iteration, online_iteration);
// write to output array
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_final);
free(dist);
free(cluster_assignment_cur);
free(cluster_assignment_prev);
free(point_move_score);
}
0
Comments
-
Hi Dear
I hope the attached paper be usefull
http://www.researchgate.net/publictopics.PublicPostFileLoader.html?id=55d3e2a86225ff3fce8b4594&key=edd6ed8c-c96e-4024-82f6-3078d2c4e44f
0
Categories
- All Categories
- 167 LFX Mentorship
- 219 LFX Mentorship: Linux Kernel
- 803 Linux Foundation IT Professional Programs
- 358 Cloud Engineer IT Professional Program
- 181 Advanced Cloud Engineer IT Professional Program
- 83 DevOps Engineer IT Professional Program
- 150 Cloud Native Developer IT Professional Program
- 112 Express Training Courses
- 138 Express Courses - Discussion Forum
- 6.3K Training Courses
- 48 LFC110 Class Forum - Discontinued
- 17 LFC131 Class Forum
- 42 LFD102 Class Forum
- 227 LFD103 Class Forum
- 19 LFD110 Class Forum
- 39 LFD121 Class Forum
- 15 LFD133 Class Forum
- 7 LFD134 Class Forum
- 17 LFD137 Class Forum
- 63 LFD201 Class Forum
- 3 LFD210 Class Forum
- 5 LFD210-CN Class Forum
- 2 LFD213 Class Forum - Discontinued
- 128 LFD232 Class Forum - Discontinued
- 1 LFD233 Class Forum
- 2 LFD237 Class Forum
- 23 LFD254 Class Forum
- 698 LFD259 Class Forum
- 109 LFD272 Class Forum
- 3 LFD272-JP クラス フォーラム
- 10 LFD273 Class Forum
- 157 LFS101 Class Forum
- 1 LFS111 Class Forum
- 1 LFS112 Class Forum
- 1 LFS116 Class Forum
- 1 LFS118 Class Forum
- LFS120 Class Forum
- 7 LFS142 Class Forum
- 7 LFS144 Class Forum
- 3 LFS145 Class Forum
- 1 LFS146 Class Forum
- 3 LFS147 Class Forum
- 1 LFS148 Class Forum
- 15 LFS151 Class Forum
- 4 LFS157 Class Forum
- 36 LFS158 Class Forum
- 8 LFS162 Class Forum
- 1 LFS166 Class Forum
- 1 LFS167 Class Forum
- 3 LFS170 Class Forum
- 2 LFS171 Class Forum
- 1 LFS178 Class Forum
- 1 LFS180 Class Forum
- 1 LFS182 Class Forum
- 1 LFS183 Class Forum
- 29 LFS200 Class Forum
- 736 LFS201 Class Forum - Discontinued
- 2 LFS201-JP クラス フォーラム
- 14 LFS203 Class Forum
- 135 LFS207 Class Forum
- 1 LFS207-DE-Klassenforum
- 1 LFS207-JP クラス フォーラム
- 301 LFS211 Class Forum
- 55 LFS216 Class Forum
- 48 LFS241 Class Forum
- 48 LFS242 Class Forum
- 37 LFS243 Class Forum
- 15 LFS244 Class Forum
- LFS245 Class Forum
- LFS246 Class Forum
- 51 LFS250 Class Forum
- 1 LFS250-JP クラス フォーラム
- LFS251 Class Forum
- 155 LFS253 Class Forum
- LFS254 Class Forum
- LFS255 Class Forum
- 5 LFS256 Class Forum
- 1 LFS257 Class Forum
- 1.3K LFS258 Class Forum
- 10 LFS258-JP クラス フォーラム
- 122 LFS260 Class Forum
- 159 LFS261 Class Forum
- 42 LFS262 Class Forum
- 82 LFS263 Class Forum - Discontinued
- 15 LFS264 Class Forum - Discontinued
- 11 LFS266 Class Forum - Discontinued
- 20 LFS267 Class Forum
- 25 LFS268 Class Forum
- 31 LFS269 Class Forum
- 4 LFS270 Class Forum
- 199 LFS272 Class Forum
- 1 LFS272-JP クラス フォーラム
- LFS274 Class Forum
- 3 LFS281 Class Forum
- 10 LFW111 Class Forum
- 261 LFW211 Class Forum
- 182 LFW212 Class Forum
- 15 SKF100 Class Forum
- 1 SKF200 Class Forum
- 1 SKF201 Class Forum
- 782 Hardware
- 198 Drivers
- 68 I/O Devices
- 37 Monitors
- 96 Multimedia
- 174 Networking
- 91 Printers & Scanners
- 83 Storage
- 758 Linux Distributions
- 80 Debian
- 67 Fedora
- 15 Linux Mint
- 13 Mageia
- 23 openSUSE
- 143 Red Hat Enterprise
- 31 Slackware
- 13 SUSE Enterprise
- 348 Ubuntu
- 461 Linux System Administration
- 39 Cloud Computing
- 70 Command Line/Scripting
- Github systems admin projects
- 90 Linux Security
- 77 Network Management
- 101 System Management
- 46 Web Management
- 64 Mobile Computing
- 17 Android
- 34 Development
- 1.2K New to Linux
- 1K Getting Started with Linux
- 371 Off Topic
- 114 Introductions
- 174 Small Talk
- 19 Study Material
- 806 Programming and Development
- 304 Kernel Development
- 204 Software Development
- 1.8K Software
- 263 Applications
- 180 Command Line
- 3 Compiling/Installing
- 405 Games
- 309 Installation
- 97 All In Program
- 97 All In Forum
Upcoming Training
-
August 20, 2018
Kubernetes Administration (LFS458)
-
August 20, 2018
Linux System Administration (LFS301)
-
August 27, 2018
Open Source Virtualization (LFS462)
-
August 27, 2018
Linux Kernel Debugging and Security (LFD440)